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It has been revealed that intersubject variability (ISV) in intrinsic functional connectivity (FC) is associated with a 

wide variety of cognitive and behavioral performances. However, the underlying organizational principle of ISV 

in FC and its related gene transcriptional profiles remain unclear. Using resting-state fMRI data from the Human 

Connectome Project (299 adult participants) and microarray gene expression data from the Allen Human Brain 

Atlas, we conducted a transcription-neuroimaging association study to investigate the spatial configurations of 

ISV in intrinsic FC and their associations with spatial gene transcriptional profiles. We found that the multimodal 

association cortices showed the greatest ISV in FC, while the unimodal cortices and subcortical areas showed 

the least ISV. Importantly, partial least squares regression analysis revealed that the transcriptional profiles of 

genes associated with human accelerated regions (HARs) could explain 31.29% of the variation in the spatial 

distribution of ISV in FC. The top-related genes in the transcriptional profiles were enriched for the development 

of the central nervous system, neurogenesis and the cellular components of synapse. Moreover, we observed that 

the effect of gene expression profile on the heterogeneous distribution of ISV in FC was significantly mediated by 

the cerebral blood flow configuration. These findings highlighted the spatial arrangement of ISV in FC and their 

coupling with variations in transcriptional profiles and cerebral blood flow supply. 
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. Introduction 

Intersubject variability (ISV) in the functional connectivity (FC) of

he human brain underlies individual differences in cognition and be-

avior ( Finn and Todd Constable, 2016 ; Kelly et al., 2012 ; Smith et al.,

015 ). Recently, resting-state fMRI (R-fMRI) studies suggested that the

SV in intrinsic FC exhibited a sizeable regional variation for both adults

 Li et al., 2019 ; Mueller et al., 2013 ) and neonates ( Gao et al., 2014 ;

toecklein et al., 2020 ), with higher ISV in multimodal association cor-

ices than in unimodal cortices. These regions with high ISV in FC can

ot only predict individual differences in higher-order cognitive func-

ions (e.g., inhibition and fluid intelligence) but also provide valuable

nformation for individual identification ( Finn et al., 2015 ; Horien et al.,

019 ; Liu et al., 2018 ). Moreover, previous works demonstrated that the

verall spatial pattern of ISV in FC detected in the neonatal brain was

imilar to the spatial distribution observed in healthy adults ( Gao et al.,

014 ; Stoecklein et al., 2020 ). The similar overall spatial distribution of

SV in FC between the neonatal brain and the adult brain highlighted
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he effect of gene expression on the spatial distribution of ISV in FC.

oreover, human twin studies have suggested that the FC is heritable

 Anderson et al., 2021 ; Ge et al., 2017 ; Glahn et al., 2010 ; Miranda-

ominguez et al., 2018 ). The similarity in FC was greater for monozy-

otic twins relative to dizygotic twins and unrelated individuals. How-

ver, the mechanism underlying the contribution of genetic factors to

he heterogeneous distribution of ISV in FC remains poorly understood.

Previous studies have begun to explore the genetic basis of hu-

an brain FC organization ( Gao et al., 2014 ; Richiardi et al., 2015 ;

értes et al., 2016 ; Wang et al., 2015 ). In the study of Gao et al. (2014) ,

he genetic contribution to ISV in FC was estimated by comparing FC

ariability across monozygotic twins, dizygotic twins and unrelated sin-

leton pairs. They found that an increased degree of genetic sharing

100% in monozygotic twins) was significantly associated with a de-

rease in FC variability, which indicated a strong genetic effect on ISV

n FC. However, the previous study on the genetic contribution to ISV

n FC mainly revealed the high heritability of FC, and which genes are

ssociated with the heterogeneous distribution of ISV in FC remains un-

nown. Doan et al. (2016) identified human accelerated regions (HARs)
ember 2021 
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f the human genome, which represented genomic loci with accelerated

ivergence in humans compared to other species using the comparative

enome analysis. Genes located in human accelerated regions, labeled as

AR genes, have been found to relate to neuron development processes,

uch as cortical expansion, neurogenesis, and neuronal differentiation

 Doan et al., 2016 ; Wei et al., 2019 ; Won et al., 2019 ), and regulate

uman-specific social and behavioral traits ( Doan et al., 2016 ). Notably,

he effect of HAR genes involved in various functions across the entire

uman body, which is not specific to the brain. Wei et al. (2019) then

dentified a set of HAR genes, labeled as HAR-BRAIN genes, by overlap-

ing HAR genes set with BRAIN genes set, which were characterized as

ignificantly higher expressed in brain sites than non-brain sites. They

ound that HAR-BRAIN genes played a crucial role in the cortical ex-

ansion and cortical organization of cognitive functional networks in

he human brain. Recent research suggested that cortical expansion has

een considered to be an influential factor affecting the heterogeneous

istribution of ISV ( Mueller et al., 2013 ; Stoecklein et al., 2020 ). There-

ore, we speculated that the regional variation in gene expression profile

f HAR-BRAIN genes would be a potential genetic underpinning of the

eterogeneous distribution of ISV in FC. However, how the gene expres-

ion profile shapes the heterogeneous distribution of ISV in FC remains

argely unknown. 

The regions with high ISV in FC, which are primarily located in

he prefrontal and parietal cortices, largely overlap with the regions

ith high cerebral blood flow ( Liang et al., 2013 ). Resting-state cerebral

lood flow (CBF) reflects the regional metabolism level and is a funda-

ental physiological property of the human brain ( Satterthwaite et al.,

014 ). Moreover, resting-state CBF is also influenced by genetic factors

hat are involved in neurogenesis and neuron development ( Goyal et al.,

014 ). In addition, a previous study has found that the genes that influ-

nce brain metabolism also regulate FC ( Glahn et al., 2010 ). Hence, we

peculated that the brain metabolism level might mediate the effect of

ene expression on ISV in FC. 

To uncover the mechanism underlying the contributions of genetic

actors to ISV in FC, we conducted a transcription-neuroimaging associ-

tion study ( Fig. 1 for schematic of this study). Our first aim was to in-

estigate the spatial configurations of ISV in FC based on high-resolution

-fMRI data from the Human Connectome Project (HCP; 299 adult par-

icipants) ( Van Essen et al., 2013 ) and their relationship to a variety of

ognitive abilities based on the meta-analysis method of the NeuroSynth

atabase ( Yarkoni et al., 2011 ). Based on previous studies ( Gao et al.,

014 ; Mueller et al., 2013 ), we hypothesized that the high ISV in FC

ould be located in the association cortices, which tend to be respon-

ible for higher-order functions. Our second aim was to investigate the

elationship between gene expression profiles obtained from the Allen

uman Brain Atlas ( Hawrylycz et al., 2012 ) and intersubject variability

n FC by directly examining the overlapping spatial variations of gene

xpression profiles and ISV in FC. We hypothesized that the expression

f HAR-BRAIN genes, which are crucial for brain neuron development,

ould significantly correlate with ISV in FC. Our third aim was to ex-

mine the potential mediation effect of resting-state CBF by conducting

 mediation analysis to model the relationships among the gene expres-

ion profile, CBF, and the spatial distribution of ISV in FC. 

. Materials and methods 

.1. Participants 

Data of 339 unrelated healthy adults from the released dataset of 900

articipants were obtained from the Human Connectome Project (HCP;

an Essen et al., 2013 ). Since the HCP provides data from a large number

f twins and non-twin siblings, we only selected unrelated participants,

ach with a unique family ID, to avoid confounding effects induced by

hared genetic and environmental factors within a family structure. All

articipants were between 22 and 37 years old and had provided written
2 
nformed content. The HCP project was approved by the Institutional

eview Board of Washington University in St. Louis. 

.2. R-fMRI data acquisition 

All R-fMRI data were collected using a customized 32-channel

iemens 3T Connectome Skyra scanner. During scanning, the partici-

ants were asked to open their eyes, stare at the bright cross-hair on a

lack background, and relax. The R-fMRI data were collected in two ses-

ions on two different days. Each session consisted of two run scans with

 left-to-right (LR) and a right-to-left (RL) phase encoding direction, re-

ulting in 4 resting-state run scans for each participant. Each R-fMRI run

as acquired using a multiband gradient-echo-planar imaging sequence

s follows: time repetition (TR) = 720 ms, time echo (TE) = 33.1 ms,

ip angle = 52°, field of view = 208 ×180 mm 

2 , matrix = 104 ×90, 72

lices, voxel size = 2 ×2 ×2 mm 

3 , multiband factor = 8, and 1200 vol-

mes (scanning time: 14.4 min). To eliminate the potential impact of

ifferent phase encoding directions on our findings, our analyses were

estricted to the R-fMRI data with LR phase-encoding runs in two dif-

erent sessions. 

.3. R-fMRI data preprocessing 

The R-fMRI data were first preprocessed by the HCP according to

he HCP minimal preprocessing procedure ( Glasser et al., 2013 ), which

ncluded gradient distortion correction, head motion correction, image

istortion correction, spatial transformation to the Montreal Neurolog-

cal Institute (MNI) space, and intensity normalization. Forty partici-

ants were discarded due to excessive head motion in either session with

he exclusion criteria of mean frame-wise head motion above 0.14 mm

filename: Movement_RelativeRMS_mean.txt) ( Finn et al., 2015 ). There-

ore, 299 participants (28.46 ± 3.69 years old, 139 male/160 female)

ere used for subsequent analyses. Further data preprocessing con-

ucted by the current study was performed using the Data Process-

ng Assistant for Resting-State fMRI (DPARSF) ( Yan and Zang, 2010 ;

an et al., 2016 ) and Statistical Parametric Mapping software (SPM12;

ttp://fil.ion.ucl.ac.uk/spm ). These additional preprocessing steps we

erformed included: (1) removing linear trend; (2) regressing out nui-

ance signals [including 24 head motion parameters ( Friston et al.,

996 ), cerebrospinal fluid, white matter and global signals ( Birn et al.,

006 ; Fox et al., 2009 )]; and (3) performing temporal bandpass filtering

0.01–0.1 Hz). The residuals were used to construct FC matrix. 

.4. FC matrix construction 

To construct the whole-brain FC matrix, the parcellation atlas with

25 similar-sized regions was used to parcellate the brain gray matter

excluding cerebellum) into 625 regions of interest (ROIs), which pre-

erved the automated anatomical labeling (AAL) landmarks ( Dai et al.,

019 ; Tzourio-Mazoyer et al., 2002 ; Zalesky et al., 2010 ). The time se-

ies were then extracted from each ROI by averaging the time series

f all voxels within that region. Finally, the Pearson’s correlation co-

fficients between the time courses of each possible pair of ROIs were

alculated and normalized using Fisher’s z-transformation, resulting in

 625 ×625 FC matrix for each participant. 

.5. ISV in FC 

ROI-level ISV . To derive the spatial distribution map of ISV in FC

cross the whole brain, we calculated the ISV in FC pattern based on

ach ROI ( Fig. 1 ). The FC map of each ROI was denoted as a 624-

imensional real vector F i ( s, t ), where i ∈{1, 2, …, 625}, s ∈{1, 2, …,

99}, t ∈{1, 2} indicated the respective indices of ROIs, participants,

nd scan sessions, and each element corresponded to the FC between

OI i and the remaining 624 ROIs. Given an ROI i and a participant s ,

http://fil.ion.ucl.ac.uk/spm
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Fig. 1. Schematic diagram of study design and methodology. (A) Using the repeat-measured R-fMRI data from HCP to calculate the ROI-level ISV in FC. (B) Using the 

microarray gene expression data across cortical regions from the Allen Human Brain Atlas to obtain the average gene expression profiles across six donors. (C) Using 

the partial least squares regression to investigate the association between the distribution of ISV in FC and gene expression profiles. (D) Gene-specificity analysis of 

ISV-related transcription-neuroimaging associations. (E) Gene enrichment analysis for top-related genes. (F) Mediation analysis for testing the relationships between 

the genes, resting-state CBF and ISV in FC. ISV, intersubject variability; FC, functional connectivity; PLS, partial least squares; CBF, cerebral blood flow. 
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h  
he within-subject variability in ROI-level FC between two sessions was

uantified as 

 

W 

𝑖 
( 𝑠 ) = 1 − 𝑐𝑜𝑟𝑟 

(
𝐹 𝑖 ( 𝑠, 1 ) , 𝐹 𝑖 ( 𝑠, 2 ) 

)
, (1)

here 𝑐𝑜𝑟𝑟 was the function of the Pearson’s correlation. The average

ithin-subject variability of two different participants s 1 and s 2 for ROI

 was defined as 

𝑉 W 

𝑖 

(
𝑠 1 , 𝑠 2 

)
= 

1 
2 
[
𝑉 W 

𝑖 

(
𝑠 1 
)
+ 𝑉 W 

𝑖 

(
𝑠 2 
)]
. (2)

In addition to the within-subject variability, the between-subject

ariability between s 1 and s 2 for ROI i in each scan session was esti-

ated as 

 

B 
𝑖 

(
𝑠 1 , 𝑠 2 , 𝑡 

)
= 1 − 𝑐𝑜𝑟𝑟 

(
𝐹 𝑖 
(
𝑠 1 , 𝑡 

)
, 𝐹 𝑖 

(
𝑠 2 , 𝑡 

))
. (3)

The average between-subject variability of two different participants

cross two sessions for ROI i was defined as 

𝑉 B 
𝑖 

(
𝑠 1 , 𝑠 2 

)
= 

1 
2 
[
𝑉 B 
𝑖 

(
𝑠 1 , 𝑠 2 , 1 

)
+ 𝑉 B 

𝑖 

(
𝑠 1 , 𝑠 2 , 2 

)]
. (4) 

Based on the above definitions, we defined the intersubject variabil-

ty (ISV) of ROI i between two different participants s 1 and s 2 by remov-

ng the average within-subject variability 𝑀𝑉 W 

𝑖 
( 𝑠 1 , 𝑠 2 ) from the average

etween-subject variability 𝑀𝑉 B 
𝑖 
( 𝑠 1 , 𝑠 2 ) , i.e., 

 𝑆 𝑉 𝑖 
(
𝑠 1 , 𝑠 2 

)
= 𝑀 𝑉 B 

𝑖 

(
𝑠 1 , 𝑠 2 

)
− 𝑀 𝑉 W 

𝑖 

(
𝑠 1 , 𝑠 2 

)
. (5)

The intersubject variability 𝐼𝑆 𝑉 𝑖 ( 𝑠 ) of an ROI i regarding a single

articipant s was then calculated as the mean of the intersubject vari-

bilities between s and the other 298 participants. By averaging the in-

ersubject variabilities across all of the participants, we obtained the

verage ISV of ROI i as follows: 

 𝑆 𝑉 𝑖 = 

1 
299 

299 ∑

𝑠 =1 
𝐼 𝑆 𝑉 𝑖 ( 𝑠 ) . (6)
3 
Finally, we repeated the above computation for all 625 ROIs, result-

ng in a 625 ×1 ISV map. 

Within-module-level ISV . To quantify the ISV in FC at the modu-

ar level, the 625 ROIs were partitioned into seven functional modules

 Yeo et al., 2011 ), including the visual (Vis), somatomotor (Mot), dorsal

ttention (dATN), ventral attention (vATN), limbic (LMB), frontopari-

tal (FPN), and default mode network (DMN). In particular, each ROI

as assigned to the module that had the maximum number of voxels

verlapping with the ROI. Notably, 19 ROIs in the subcortical region

ere not involved in the construction of the within-module FC maps

ecause they did not overlap with any of the above modules. For each

odule, we first extracted the FC values between all pairs of ROIs within

he module to produce the within-module FC maps. Then, the ISV of the

ithin-module FC patterns was calculated in a similar way as that of

he above ROI-level ISV, except that the FC map of each ROI was re-

laced by the within-module FC map (for more details, please refer to

he Supplementary materials). As such, we obtained a 299 ×7 within-

odule-level ISV matrix, in which each element was the mean of the

ntersubject variabilities between a single participant and the other 298

articipants within the related module. 

To compare the mean within-module-level ISV difference between

ifferent modules, a nonparametric permutation test ( N = 10,000) was

erformed. The false discovery rate (FDR) correction was adopted for

ultiple comparisons with a significance threshold of p < 0.05. 

.6. Behavioral data 

To investigate the mechanism of how the regional ISV in FC under-

ies previously observed individual differences in specific behavior and

ognition, a NeuroSynth meta-analysis was implemented to assess be-

avioral topics associated with regional ISV using the NeuroSynth meta-
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nalytic database ( http://www.neurosynth.org ) ( Yarkoni et al., 2011 ).

pecifically, the original ISV map was split into 20 intervals with five-

ercentile increments (i.e., intervals from 0-5% to 95-100%) and then

inarized to obtain 20 binary maps. Each of the 20 binary maps was

sed as an input to the meta-analysis, and the outputs of the analysis

ere z-statistics associated with the 23 behavioral topics representing

 wide range of behaviors (e.g., motor, emotion, and working mem-

ry) ( Margulies et al., 2016 ; Preti and Van De Ville, 2019 ). NeuroSynth

eta-analysis could provide additional insights into detailed differences

n ISV composition patterns of the brain regions involved in different

ognitive functions. 

.7. Gene expression 

.7.1. AHBA dataset 

To characterize the genetic underpinnings of ISV in FC, the gene sym-

ol list of 415 brain-expressed HAR genes (further referred to as HAR-

RAIN genes) was first obtained from Wei et al. (2019) , and the gene

xpression profiles of these HAR-BRAIN genes were extracted from the

omplete microarray gene expression data from the Allen Human Brain

tlas dataset (AHBA) ( http://human.brain-map.org/static/download )

 Hawrylycz et al., 2012 ). AHBA consists of expression profiles of 20,700

enes measured by 58,692 probes for 3702 spatially distinct tissue sam-

les collected from the postmortem brains of six human donors (all with-

ut a history of neuropsychiatric or neuropathological disorders) (for de-

ails, see Table S1 and Supplementary materials). Tissue samples of the

eft hemisphere were included in this study, as data from all six donors

ere available for the left hemisphere, and only two donors were avail-

ble for the right hemisphere. The local gene expression values of each

ample were accompanied by the X, Y, and Z coordinates in MNI152

pace indicating where the samples were extracted, allowing us to map

xpression values to other brain atlas. 

After obtaining the gene expression values and the MNI152 co-

rdinates for each sample from AHBA, we adapted a data-reduction

nd mapping procedure similar to that of Wei et al. (2019) and

omme et al. (2017) to map the gene expression values of tissue samples

n AHBA to brain regions of AAL-625 atlas. First, for each donor, expres-

ion values from multiple probes corresponding to the same gene were

veraged to generate 20,700 gene expression levels for each sample, ac-

ording to the instructions in the Probe.csv of each donor’s microarray

ata files. Further, gene expression values of all genes on each sample

ere normalized by dividing by the average gene expression value of

he sample. Second, samples outside the left hemisphere were excluded

ccording to the sample annotation in SampleAnnot.csv of each donor’s

icroarray data files. Third, we calculated the minimal Euclidean dis-

ance between the reported MNI coordinates of samples and the MNI

oordinates of all gray matter voxels located in the left hemisphere of

he AAL-625 atlas to find the closest voxel for each sample. Each sample

as assigned to a particular ROI to which the closest voxel belonged,

nd a distance threshold of 2 mm was used to eliminate the inaccurate

ssignment of ROI. We checked the assignment by visual examination

o ensure that the location of the sample overlapped with that of the

ssigned ROI. After performing the above procedure, tissue samples of

ix donors were spatially mapped to 302 ROIs. 

The gene expression data were computed for each ROI by averaging

he expression data of the samples mapped to that particular ROI. Gene

xpression data of each gene were normalized to z-scores across all ROIs

n each donor’s dataset. Normalized gene expression data were then av-

raged across six donors to obtain a 302 ×20,700 group-level gene ex-

ression matrix. Gene expression data of 415 HAR-BRAIN genes were

xtracted from the complete group-level gene expression data matrix,

esulting in a 302 ×415 HAR-BRAIN gene expression matrix. To inves-

igate whether the HAR-BRAIN genes were more highly expressed par-

icularly in the modules with high within-module-level ISV (e.g., FPN,

MN, dATN), the HAR-BRAIN gene expression matrix was first aver-

ged across genes to obtain the average gene expression for each ROI
4 
nd then averaged within each of the seven functional modules. A non-

arametric permutation test ( N = 10,000) was performed to compare the

ean gene expression difference between modules with FDR for multi-

le comparisons correction. 

.8. Relationship among ISV in FC, HAR-BRAIN gene expression, and CBF 

.8.1. Correlation between ISV map and HAR-BRAIN gene expression 

rofile 

To test our hypothesis that the HAR-BRAIN gene expression may be a

enetic root of the heterogeneous distribution of ISV in FC, we used par-

ial least squares (PLS) regression to identify the expression patterns of

AR-BRAIN genes that were significantly correlated with ISV in FC. PLS

egression is a multivariate analysis aiming to identify the components,

hich were linear combinations of the weighted gene expression scores

predictor variables), that were the most predictive to ISV in FC (re-

ponse variables). PLS regression has been widely used for neuroimag-

ng and transcriptional data analyses ( Liu et al., 2020 ; Morgan et al.,

019 ; Seidlitz et al., 2018 ; Vértes et al., 2016 ; Whitaker et al., 2016 ).

ere, we used the code shared by Whitaker et al. (2016) to conduct the

LS regression. 

To examine whether the real R 

2 of the component that explained

ore than 10% of the total variance ( Liu et al., 2020 ) was significantly

arger than that achieved by chance, we permutated 10,000 spatial-

utocorrelation-preserving surrogate maps using the generative model-

ng implemented in BrainSMASH software (Brain Surrogate Maps with

utocorrelated Spatial Heterogeneity, Burt et al., 2020 ) to generate the

 

2 null model for PLS regression. The reason for generating spatial-

utocorrelation-preserving surrogate map rather than completely ran-

om map was to alleviate the confounding effect driven by spatial auto-

orrelation structure, which is a ubiquitous property of spatially embed-

ed brain data, and to capture the transcriptomic-neuroimaging associa-

ion that cannot be solely attributed to general spatial trends ( Burt et al.,

020 ; Fornito et al., 2019 ; Markello and Misic, 2021 ). We also used

 similar permutation test with spatial autocorrelation controlled to

xamine the significance of the empirical spatial correlation between

LS components and the ROI-level ISV map. Moreover, to determine

hether the HAR-BRAIN genes were more specifically associated with

he ISV map than the other genes, we conducted two types of gene-

pecificity analyses. Specifically, we randomly selected equal number

f HAR-BRAIN genes (i.e., 415 genes) from the pool of 2564 BRAIN

enes (excluding HAR-BRAIN genes, type I) and 20,285 AHBA genes

excluding HAR-BRAIN genes, type II) to repeat the PLS regression for

0,000 times, respectively. The BRAIN genes featuring as significantly

ore expressed in brain tissues compared to other available body sites

ere obtained from Wei et al. (2019) . The Spearman’s correlations be-

ween the PLS components and the ISV map obtained from 10,000 repe-

itions constituted two null models (type I and type II). Furthermore, we

sed the bootstrapping method to estimate the error in the estimation

f the weight of each gene and divided the weight of each gene by the

stimated error to generate the corrected weight. We ranked the genes

ccording to their corrected weights, which represented their contribu-

ions to the PLS component. 

To identify the possible biological functions of ISV-related genes,

n line with prior studies ( Anderson et al., 2020 ), we performed gene-

ategory enrichment analysis (GCEA) for the top-ranked related genes

ith positive weight (top 10%) in the first few significant components

y using the SBP-spatial ensemble null model implemented in a re-

ently released toolbox ( Fulcher et al., 2021 ). Compared with randomiz-

ng gene-to-category assignments, SBP-spatial ensemble null model uti-

izes an ensemble of phenotypes with a given spatial autocorrelation

tructure, preserving the properties of the gene expression data (e.g.,

ithin-category gene coexpression and similar spatial autocorrelation

tructure) and the spatial autocorrelation characteristic of the original

henotype simultaneously, which may help to build a more conserva-

ive spatially constrained null distribution to reduce the false positive

http://www.neurosynth.org
http://human.brain-map.org/static/download
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ate ( Fulcher et al., 2021 ). Specifically, we used the Gene Ontology

GO) term hierarchy files (data version 2019–04–17) and corresponding

nnotation files for Homo sapiens (goa_human.gaf), which were down-

oaded from the Gene Ontology Resource ( Ashburner et al., 2000 ) on

pril 17, 2019 ( Fulcher et al., 2021 ) to examine whether the top-ranked

elated genes were enriched for the predefined GO categories that have

pecific functional interpretations in three functional categories, includ-

ng biological process, cellular component, and molecular function. Ac-

ording to the pipeline of the GCEA toolbox, we completed the gene-to-

ategory annotations and preprocessed the hierarchy relationships be-

ween GO categories, and further restricted our analysis to GO categories

ith 10–200 gene annotations ( Fulcher et al., 2021 ). For each GO cate-

ory, we simulated 10,000 spatially autocorrelated surrogate ISV maps

sing the BrainSMASH software ( Burt et al., 2020 ) to constitute the null

odel to test the significance of category-level gene score, which was

easured as the average spatial correlation between ISV map and gene

xpression profile of multiple genes within the category. The p -values

ere estimated after fitting the Gaussian distribution to the estimated

ull distribution and the resulting p -values were corrected across GO

ategories through FDR with p < 0.05. The GO categories with an FDR

 -value below 0.05 were reported. 

.8.2. Correlation between ISV map and the CBF map 

To explore whether the spatial distribution of ISV in FC can reflect

he CBF configuration, we compared the spatial distributions of the ISV

ap and those of the CBF map in the resting state, which shows the

rain regions’ metabolic costs ( Satterthwaite et al., 2014 ). Specifically,

ccording to the MNI coordinates of the voxels within each ROI, the

lood flow values of the corresponding coordinates were extracted from

he CBF map and averaged to obtain an ROI-level CBF map based on

he AAL-625 atlas. Notably, we deleted 12 ROIs in which the blood flow

alues of more than 90% of voxels within that ROI were zeros. Then,

e calculated the spatial correlation between the ROI-level ISV map and

BF map and performed spatial-autocorrelation-preserving permutation

est to examine the significance of the empirical spatial correlation. 

.8.3. Mediation analysis 

To test the hypothesis that the CBF distribution mediated the con-

ribution of the gene expression profile to the ISV map, a bootstrapped

ediation analysis was performed using the simple mediation model

model 4) from the PROCESS macro in SPSS ( Hayes, 2017 ). The medi-

tion analysis was conducted with 5000 bootstrap samples to generate

ias-corrected confidence intervals (CI). The indirect effect was consid-

red significant when the bootstrapped 95% CI did not include zero

 Hayes, 2017 ). 

. Results 

.1. Spatial distribution of ISV in FC across brain regions and intrinsic 

odules 

We observed that the spatial distribution of ISV in FC [measured

y Eq. (6) ] was regionally heterogeneous ( Fig. 2 A). The association

ortices, including the prefrontal (dorsolateral superior frontal gyrus,

iddle frontal gyrus, inferior frontal gyrus), temporal (middle tempo-

al gyrus, superior temporal gyrus), and parietal lobe (supramarginal

yrus), showed high ISV. Meanwhile, the unimodal cortices, including

he primary visual (cuneus, lingual gyrus, superior occipital gyrus), sen-

orimotor (postcentral gyrus, precentral gyrus), and subcortical areas

pallidum, caudate nucleus, thalamus, amygdala) showed low ISV. This

attern was compatible with previous observations of individual vari-

bility in FC ( Mueller et al., 2013 ). 

For within-module-level ISV, visual inspection indicated that higher-

rder cognitive modules, including FPN and dATN, had the highest vari-

bility, whereas LMB and the primary modules, including the Vis and

ot, had the lowest variability ( Fig. 2 B) (for details, see Table S2). The
5 
ermutation test revealed that the ISV of the four higher-order cognitive

odules (FPN, dATN, DMN, vATN) was significantly higher than that

f LMB and the primary modules (Vis, Mot) ( p s < 0.035, 10,000 permu-

ations, FDR corrected). In addition, the ISV of vATN was significantly

ower than that of FPN and dATN ( p s < 0.024, 10,000 permutations,

DR corrected) (for details, see Table S3). 

.2. Spatial distribution of ISV in FC reflected a cognitive spectrum from 

rimary to higher-order functions 

By overlapping the 20 binary ISV maps with the 23 behavioral

opic maps available from the NeuroSynth database, we found that low-

SV regions were more related to primary functions, such as "motor",

multisensory processing", and "auditory processing", and high-ISV re-

ions were related to higher-order functions, such as "language", "cogni-

ive control", "working memory", "numerical cognition" and "inhibition"

 Fig. 2 C). The behavior of the topics arranged from bottom to top cor-

esponded to the function of the modules in Fig. 2 B that was sorted

ccording to the within-module-level ISV. 

.3. Expression profile of HAR-BRAIN genes across brain regions and 

ntrinsic modules 

To investigate how the spatial distribution of ISV in FC was related

o the expression of 415 HAR-BRAIN genes, we mapped the samples in

he AHBA dataset to the ROIs, and estimated the average expression of

15 HAR-BRAIN genes for each ROI. HAR-BRAIN genes showed high-

evel expression in regions of the frontal cortices (medial superior frontal

yrus, orbital superior frontal gyrus, dorsolateral superior frontal gyrus),

emporal pole (superior temporal gyrus, middle temporal gyrus), and

nterior cingulate and paracingulate gyri. Meanwhile, the visual cor-

ices (fusiform gyrus, lingual gyrus) and subcortical regions (thalamus,

allidum, parahippocampal gyrus, caudate nucleus, putamen) displayed

ow-level gene expression ( Fig. 3 A). Hence, there was an overall ten-

ency that the average expression of HAR-BRAIN genes increased from

ubcortical regions and primary areas to the association cortices. 

The permutation test indicated that the HAR-BRAIN genes showed

ignificantly higher expression levels in LMB, DMN, dATN, vATN, and

PN than in Vis ( p s < 0.024, 10,000 permutations, FDR corrected), but

o significant difference was detected among these five modules (for

etails, see Table S4 and S5). In addition, the gene expression in the

MN was significantly higher than that in the Mot ( p = 0.024, 10,000

ermutations, FDR corrected) ( Fig. 3 B). 

.4. Gene expression profile was associated with the spatial distribution of 

SV in FC 

Using PLS regression, we found that two significant components ex-

lained 31.29% of the variance in ISV ( p < 0.001, permutation tests

ith spatial autocorrelation corrected, 10,000 permutations) (Fig. S1

nd S2). Specifically, the first partial least squares component (PLS1)

epresented a significantly positive association between ISV in FC and a

ene expression profile characterized by high expression mainly in the

refrontal, parietal, and lateral temporal areas (Spearman’s 𝜌 = 0.532,

 = 0.0004, permutation tests with spatial autocorrelation corrected,

0,000 permutations) ( Fig. 3 C, 3 D). The second independent partial

east squares component (PLS2) also represented a significantly posi-

ive association between ISV in FC and a gene expression profile dis-

laying high expression predominantly in the subcortical, temporal and

refrontal areas (Spearman’s 𝜌 = 0.432, p = 0.0011, permutation tests

ith spatial autocorrelation corrected, 10,000 permutations) ( Fig. 3 F,

 G). The results of type I gene-specificity analysis showed that the

pearman’s correlation between PLS1, PLS2, and ISV in FC was sig-

ificantly higher than that of the null model (PLS1: p < 0.001; PLS2:

 = 0.0167), which was based on equally sized random gene sets taken

rom BRAIN genes ( Fig. 3 E, 3 H). The type II gene-specificity analysis
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Fig. 2. Spatial distribution map of ISV in FC and results of NeuroSynth meta-analysis. (A) Spatial distribution of ROI-level ISV. The subcortical regions displayed in 

Fig. 2 and 3 included insula, caudate, putamen, pallidum, thalamus, hippocampus, and amygdala. (B) Comparison of within-module-level ISV. The error bar indicates 

the standard deviation (SD) of the within-module-level ISV across all the participants under each module. The matrix on the right shows the within-module-level ISV 

differences between the modules (row-column); within-module-level ISV differences that are not significant in the permutation test ( p > 0.05) are set to zeros. (C) 

NeuroSynth meta-analysis of regions of interest along the ISV using 23 behavioral topic terms. Terms are ordered by the weighted mean z-statistics of their location 

along the ISV. ISV, intersubject variability; FC, functional connectivity. 
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ased on the AHBA gene pool found that the Spearman’s correlation be-

ween PLS1 and ISV remained significantly higher than that of the null

odel ( p = 0.0078) (Fig. S3A), while the association between PLS2 and

SV was no longer significant ( p = 0.2613) (Fig. S3B). These findings

uggested that the spatial expression pattern of PLS1 component played

 specific role in shaping the spatial distribution of ISV in FC. 

The GCEA results showed that the transcriptional profile of PLS1

omponent was significantly enriched in GO categories related to the

iological processes involved in central nervous system development,

egulation of cell development, neurogenesis, neuron differentiation

nd metabolic process ( p s < 0.05, FDR corrected), and the transcrip-

ional profile of PLS1 component was significantly enriched in GO cate-

ories associated with the cellular components of the synapse, synaptic

embrane, plasma membrane (integral component and intrinsic compo-

ent), and cell junction ( p s < 0.05, FDR corrected). Moreover, the tran-

criptional profile of PLS1 component was also significantly enriched in

O categories related to the molecular function such as protein binding

nd ion binding ( p s < 0.05, FDR corrected). Meanwhile, the GCEA re-

ults of the transcriptional profile derived from PLS2 component were
6 
imilar to that of PLS1 component ( p s < 0.05, FDR corrected). Detailed

esults of GCEA, which included the significant GO category name, gene

ymbol, category scores, original and corrected p -values, were tabulated

n Supplemental Table 1–6 (Supplemental Table 1–3 for PLS1 and 4–6

or PLS2). 

.5. CBF mediated the association between the gene expression profile and 

SV in FC 

As reported by Satterthwaite et al. (2014) , brain CBF varied region-

lly in the resting state, with high CBF primarily distributed in the bilat-

ral dorsolateral prefrontal cortex, superior and medial frontal cortex,

osterior cingulate cortex, lateral temporal cortex and inferior parietal

obes ( Fig. 4 A). A significant positive correlation was shown between

he CBF and ISV in FC (Spearman’s 𝜌 = 0.336, p = 0.0034, permuta-

ion tests with spatial autocorrelation corrected, 10,000 permutations)

 Fig. 4 B). Additionally, we found that higher gene expression of PLS1

as associated with higher CBF (path a: 𝛽 = 0.313, p < 0.001). After

ontrolling the influence of PLS1, higher CBF was related to higher ISV
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Fig. 3. Association between gene expression profiles and ISV in FC. (A) Average expression profile of HAR-BRAIN genes. (B) HAR-BRAIN gene expression within 

each module ranked in the descending order of the mean gene expression. The error bar indicates the SD of the average gene expression levels of ROIs within the same 

module. The matrix on the right shows the gene expression differences between the modules (row-column); gene expression differences that are not significant in the 

permutation test ( p > 0.05) are set to zeros. (C) PLS1 identifies a gene expression profile with overexpression mainly in the prefrontal, parietal and lateral temporal 

cortices. (D) Spearman’s correlation between PLS1 and ROI-level ISV in FC. Spatial correlation was tested for significance against a spatial-autocorrelation-preserving 

null distribution (BrainSMASH). The red shadow indicates the 95% CI. (E) Gene-specificity analysis of the association between PLS1 and ROI-level ISV in FC. The red 

dotted line represents the empirical correlation value. (F) PLS2 identifies a gene expression profile with overexpression dominantly in the subcortical, temporal and 

prefrontal cortices. (G) Spearman’s correlation between PLS2 and ROI-level ISV in FC. Spatial correlation was tested for significance against a spatial-autocorrelation- 

preserving null distribution (BrainSMASH). (H) Gene-specificity analysis of the association between PLS2 and ROI-level ISV in FC. ISV, intersubject variability; FC, 

functional connectivity; PLS1, the first partial least squares regression component; PLS2, the second partial least squares regression component. 
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path b: 𝛽 = 0.201, p < 0.001). After considering the effect of CBF, the

ffect of PLS1 on ISV was weakened (path c’: 𝛽 = 0.378, p < 0.001,

rom path c: 𝛽 = 0.441, p < 0.001). Furthermore, mediation analysis

evealed that CBF was a significant mediator (indirect effect = 0.063,

5% CI = [0.031, 0.104]), partially explaining the positive association

etween PLS1 and ISV ( Fig. 4 C, top), while CBF did not mediate the

ositive association between PLS2 and ISV (indirect effect = 0.019, 95%

I = [ − 0.008, 0.050]) ( Fig. 4 C, bottom). 

. Discussion 

Using R-fMRI, gene expression, and CBF data, we showed that the

hanges in the human genome during evolution played an important

ole in shaping the distribution of ISV in FC. First, we found that ISV in
7 
C distributed heterogeneously across the whole brain, showing greater

SV in multimodal association cortices whilst less ISV in unimodal cor-

ices and subcortical areas. Additionally, we found that the spatial dis-

ribution of ISV in FC reflected a cognitive spectrum from primary

o higher-order functions using a NeuroSynth meta-analysis. Second,

e demonstrated that the spatial distribution of ISV in FC was corre-

ated with the transcriptional profiles of HAR-BRAIN genes across re-

ions, and the most correlated genes were related to the development

f synapses and the central nervous system, neurogenesis, and neuron

ifferentiation. Finally, we revealed that the effect of the gene expres-

ion profile on the heterogeneous distribution of ISV in FC was signifi-

antly mediated by the CBF configuration. Together, these findings may

nhance our understanding of the molecular and neural mechanisms

ssociated with the spatial arrangement of ISV in FC. 
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Fig. 4. The CBF map and mediation analysis. (A) CBF map extracted from Satterthwaite et al. (2014) . (B) Spearman’s correlation between ROI-level CBF and ROI-level 

ISV. ROI-level CBF was calculated as the average CBF of all voxels within each ROI. Notably, we deleted 12 ROIs in which the blood flow values of more than 90% of 

voxels within that ROI were zeros. The red shadow indicates the 95% CI. Spatial correlation was tested for significance against a spatial-autocorrelation-preserving 

null distribution (BrainSMASH) (C) The relationship between gene expression profiles of PLS1 (top) and ISV in FC was mediated by CBF. Standardized regression 

coefficients were reported. CBF, cerebral blood flow; ISV, intersubject variability; PLS1, the first partial least squares regression component; PLS2, the second partial 

least squares regression component. ∗∗∗ p < 0.001. 
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.1. Spatial distribution of ISV in FC 

The overall pattern of ISV in FC observed in healthy young adults

as comparable with the distribution observed in healthy elderly people

 Mueller et al., 2013 ) and in infants ( Gao et al., 2014 ; Stoecklein et al.,

020 ), suggesting that the overall pattern of ISV in FC may be con-

istent across different age groups. Previous studies have consistently

ound that the spatial distribution of ISV in FC emerges during infancy

 Gao et al., 2014 ; Stoecklein et al., 2020 ), which may reveal the con-

ribution of genetic influences to ISV in FC. In addition, when com-

aring the pattern of ISV in FC of the neonate brain with that of the

dult brain, the association cortices demonstrated a marked increment

f ISV in FC for adults, which reflected that postnatal environmen-

al and developmental factors were likely to contribute to ISV in FC

 Stoecklein et al., 2020 ). These results suggest that the genes and en-

ironment shape the ISV in FC together. In addition, previous studies

ave shown that association cortices expanded dramatically during hu-

an brain evolution, while the primary cortices showed small corti-

al expansion ( Ardesch et al., 2019 ; Buckner and Krienen, 2013 ). The

ssociation cortices also expanded more during postnatal development

nd matured more slowly ( Buckner and Krienen, 2013 ; Hill et al., 2010 ;
8 
au and Peterson, 2010 ), which may make the association cortices more

usceptible to developmental environments, such as education, leading

o the observed high variability in FC. The function of primary cor-

ices may tend to be similar across individuals since the primary cor-

ices need to be relatively mature in early life to support early sur-

ival, such as supporting functions like vision and movement ( Lin et al.,

008 ; Smyser et al., 2010 ), making postnatal environment less influ-

ntial on primary cortices. Notably, we found that the limbic system

xhibited the lowest variability among all functional modules, which

as inconsistent with its moderate variability observed in a previous

tudy ( Fig. 2 B; Mueller et al., 2013 ). The discrepancy may be caused by

ifferent sample ages. Although the spatial distribution of ISV detected

n different age groups was similar in the overall pattern, which demon-

trated greater ISV in multimodal association cortices and less ISV in

nimodal regions ( Gao et al., 2014 ; Ma et al., 2021 ; Stoecklein et al.,

020 ), there are still some differences in the ISV values across differ-

nt age groups. For example, the multimodal association cortices of

dult brain demonstrated a marked increase in variability compared

ith infant brain, which was thought to result from more interactions

etween gene expression and environment over a longer period of time

 Gao et al., 2014 ; Stoecklein et al., 2020 ). Meanwhile, a recent study
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ound that the individual variability in FC of the subcortical network,

hich has a strong regional overlapping with the limbic system, in-

reased significantly with age, although it was still lower than that in

he association cortices ( Ma et al., 2021 ). Further, they found that com-

ared with other functional networks, the individual variability in FC

f the subcortical network was relatively low in adults, while relatively

igh in the elderly. Hence, it may be reasonable that our findings based

n young people (28 years old) were different from those based on older

eople (52 years old) ( Mueller et al., 2013 ), and further study is needed

o depict the development curve of ISV in FC across the lifespan. 

.2. Expression of synapse and neuron development-related genes was 

ssociated with ISV in FC 

We found that the expression profiles of the genes related to human

rain evolution (HAR-BRAIN genes) were positively correlated with the

patial distribution of ISV in FC. In other words, HAR-BRAIN genes were

ore highly expressed in the association cortices than in the unimodal

ortices, leading to an overall trend of higher gene expression in higher-

rder cognitive modules than in primary modules, which was in accor-

ance with previous work done by Wei et al. (2019) . The expression

f HAR-BRAIN genes is known to be involved in the evolutionary cor-

ical expansion of the human brain ( Wei et al., 2019 ), which is con-

idered a potential cause of ISV in FC ( Mueller et al., 2013 ; Wang and

iu, 2014 ). These findings suggested that the expression profiles of HAR-

RAIN genes played an important role in shaping the distribution of ISV

n FC, which may be achieved by shaping the evolutionary cortical ex-

ansion of the human brain. 

Moreover, we found that the HAR-BRAIN genes, which were highly

ssociated with ISV in FC, were significantly enriched for genes involved

n synapse development, development of the central nervous system,

eurogenesis, neuron differentiation and metabolic process. Previous

tudies have demonstrated that neurogenesis and neuron differentiation

re critical processes in the generation and development of neurons in

he human brain ( Ming and Song, 2011 ), suggesting that HAR-BRAIN

enes may affect ISV in FC by regulating neuron development and

ynaptic pruning. In the gene-category enrichment analysis on the top

0% PLS1 genes, we observed some common HAR-BRAIN genes associ-

ted with human brain development. For example, ADCYAP1 modulates

endritic spine maturation and morphogenesis ( Hayata-Takano et al.,

019 ), CDH10 is essential in managing the ratio of excitatory and in-

ibitory synapses on dendrites ( Batool et al., 2019 ), and CTNNA2 is

idely expressed in the central nervous system and is critical for synap-

ic plasticity and brain morphogenesis ( Terracciano et al., 2011 ). These

ndings also suggested that HAR-BRAIN genes may influence ISV in FC

y involving synaptogenesis and synaptic plasticity. 

We found that both the spatial variation of gene expression and that

f ISV followed a global spatial gradient, extending from primary senso-

imotor cortices to higher-order association areas, which was consistent

ith the well-known processing hierarchy of the human brain (for re-

iew, see Huntenburg et al., 2018 ). To examine the potential role of

ortical hierarchy, we conducted a mediation analysis with the princi-

al gradient scores sourced from Margulies et al. (2016) as the media-

or. Results indicated that the principal gradient partially mediated the

ositive association between the gene expression pattern of PLS compo-

ent and ISV map (please refer to Supplementary materials and Fig. S4).

hen we controlled the influence of the principal gradient, the effect

f gene expression pattern on ISV distribution was weakened but re-

ained significant, which suggested that the relationship between gene

xpression and ISV may exist beyond broad spatial gradient. Previous

tudies have consistently found that brain-wide gene expression profile

ollows hierarchical gradients ( Burt et al., 2018 ; Fornito et al., 2019 ;

awrylycz et al., 2012 ). Moreover, the hierarchical gradient was con-

idered to reflect a gradual increase in the degree to which stimuli un-

ergo multisensory integration, suggesting that individual differences
9 
ere more likely to occur in advanced cognitive integration processes,

ather than in primary cognitive processes. 

In the type II gene-specificity analysis based on 20,285 AHBA genes,

he correlation between PLS2 gene expression pattern and ISV distri-

ution was no longer significant, suggesting that the gene expression

attern of PLS2 component may not be specifically related to ISV distri-

ution, but was driven by the general genome-wide expression pattern.

ence, we suggest caution when interpreting the findings of PLS2 gene

xpression pattern. Notably, the spatial correlations between PLS1 gene

xpression profile and ISV map were both significantly higher than that

f BRAIN genes and AHBA genes, which highlighted the specific role of

LS1 component in shaping the spatial pattern of ISV. 

.3. CBF map mediated the positive association between the gene 

xpression profiles and ISV in FC 

We found that CBF partially mediated the positive association be-

ween the gene expression profiles of HAR-BRAIN genes and ISV in FC.

n other words, the brain regions with high levels of HAR-BRAIN gene

xpression tended to receive more CBF and induce high ISV in FC. The

egions with high-level gene expression were mainly distributed in the

ssociation cortices, which largely overlapped with the brain regions

ith high CBF ( Liang et al., 2013 ). Combining the results of gene en-

ichment analysis and mediation analysis, we speculated that the high-

evel gene expression in association cortices might drive the generation

f a greater number of synapses and more complex synapse connectivity

rchitecture ( Goyal and Raichle, 2013 ). To support the normal develop-

ent of synapses and their neural activity in these regions, more blood

ow is required to provide nutrient supplies such as oxygen and glucose.

oreover, a previous study found that the spatial variation in CBF was

ositively associated with gene expression profiles related to synapse

ormation and growth ( Goyal et al., 2014 ; Richiardi et al., 2015 ), which

s consistent with our results. Moreover, CBF can influence the forma-

ion of FC. The fluctuation of CBF among individuals may result in ISV

n FC patterns, especially in the association cortices. The association

ortices with high CBF had a higher demand for metabolism and en-

rgy consumption, which may make them more vulnerable to fluctua-

ions in CBF among different individuals and insufficient blood supply

 Crossley et al., 2014 ). On the other hand, as mentioned above, CBF

lays an important role in synaptic development, so fluctuations in CBF

mong individuals may also lead to individual differences in brain devel-

pment ( Paniukov et al., 2020 ; Satterthwaite et al., 2014 ), especially in

ssociation cortices where the developmental time course is longer than

hat of primary cortices. These studies provide support for our finding

hat brain CBF plays a role in mediating the relationship between the

ene expression profile and the heterogeneous distribution of ISV in FC.

. Limitations 

Several limitations of the current study should be considered. First,

he gene expression data from the AHBA were sampled from six donors

ho had different ethnicities and sexes. This limited sample might have

reated a bias in capturing the spatial variation in gene expression pro-

le. However, AHBA is currently the only publicly available database

hat can provide high-resolution brain-wide mRNA gene expression

ata. In the future, larger samples containing brain-wide genome-wide

ene expression data are needed to obtain a more reliable spatial pattern

f gene expression profile and verify our findings. Moreover, future re-

earch could explore the relationship between the inter-individual vari-

bility of regional gene expression and regional ISV in FC based on larger

amples containing brain-wide genome-wide gene expression data. Sec-

nd, considering that the gene expression map and ISV map are both

alculated based on adult samples and the correlational method was

sed in the current study, there are limitations in establishing causal

olecular mechanisms of the ISV pattern. The current study could be
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egarded as a preliminary study to explore the relationships between

he gene expression profile, CBF, and ISV in FC based on spatial similar-

ty. Third, the currently reported variability map was constructed based

n the imaging data of living participants, while the gene expression

ata were derived from postmortem brains, and the CBF map was con-

tructed based on another dataset. Therefore, the results may be influ-

nced by differences among the datasets, making it difficult to capture

he relationship among the gene expression profile, CBF, and ISV in FC

t the individual level. Future studies could implement individual-level

enome-wide analysis and metabolic data to help further understand

he genetic and physiological basis underlying ISV in FC. 
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